



# 6061 MAXIFLOW BILLET PRODUCT DATA SHEET

Ultimate productivity exceeding 6061 T6 strength



# **Product description**

Maxiflow alloys are a new range of High Speed 6000 series extrusion alloys developed by Rusal. Maxiflow alloys offer an optimum combination of extrusion speed and peak aged mechanical properties. 6061 Maxiflow alloys are heat treatable AI-Mg-Si alloys that are designed for maximum extrusion speed while still meeting the highest strength requirements such as ASTM B221 and EN 755-2 6061-T6. 6061 Maxiflow alloys have good surface finish by most surface finishing treatments, including anodizing. These characteristics are appropriate for structural end uses as well a variety of other end uses requiring higher strength levels than 6063 and 6005A alloys.

# **Types of 6061 Maxiflow billets**

| Туре  | Feature of each category                                                                                                                                                                                                                                                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Туре1 | Type 1 was developed for structural end uses as well as numerous other products including semi complicated shapes. The alloy was developed for higher speed extrusion including solid and hollow shapes which require T6 mechanical properties and good surface finish at "as extruded" as well as "after anodizing treatment". Target Silicon content of this alloy is 0.55wt%. |
| Туре2 | Type 2 was developed for applications which require higher strength or more tolerance to process variation than Type 1. Tensile strength of this alloy can reach up to 350 MPa with good surface finish before and after anodizing. Maximum extrusion speed will however be less than Type 1. Target Silicon content of this alloy is 0.77wt%.                                   |

02 | MAXIFLOW BY RUSAL

MAXIFLOW BY RUSAL | 03

# **Recommended condition at extrusion operation**

In order to produce desirable extruded products the following conditions are recommended to be carefully controlled & monitored during the extrusion operation.

### Billet condition, prior to processing

Billet surface should be clean without any foreign materials, eg. sand, mud and any other substances, for minimizing the cause of surface defects on the extruded shape and for avoiding damage to the die bearing which will make the die life shorter.

#### Starting procedure with new die

It is recommended to heat dies to a uniform temperature in the whole die (ideally within +/-5°C). In case of lesser uniformity, extrude the first 1-2 billets with 20°C higher preheat temperature. Then start the extrusion operation with regular preheat temperature and extrusion speed.

# Preheating with Induction heater and Gas type heater

### a) Induction heater

Prior to extrusion, billet should be preheated to approx. 450-480°C for solid shapes and 460-490°C for hollow shapes with the taper heat of 0.5°C/cm (Front temperature should be higher than Back-end). This will allow the extrusion speed to be maximized while still maintaining a stable profile exit temperature. For heavy profiles (>12.5mm thick) with slow extrusion speeds higher preheats of 500-525°C may be required to meet minimum exit temperature requirements.

### b) Gas type heater

Under longer preheating at 400°C or higher, a lot of  $\beta$ -Mg<sub>2</sub>Si will be precipitated and have a negative influence on the mechanical properties and anodizing response. Therefore, preheating times longer than 20 mins in gas type preheater should be avoided with the best efforts.

#### **Container temperature**

The container temperature should be maintained 20-40°C lower than the billet temperature after preheating since:

#### a) In case of 0-20°C lower:

Container wall is not cool enough and billet skin would not be kept in the dead zone/into the butt discard and will tend to flow into the extruded product through the back-end as "Back-end defects".

#### b) In case of more than 40°C lower:

Excessive heat loss can occur through the container wall. The press exit temperature of the profile would not increase as expected and there would be a higher risk of the press exit temperature not reaching 510°C resulting in poor mechanical properties and slower extrusion speed.

### **Extrusion speed**

As maximum extrusion speed is strongly influenced by the die shape and chemical composition it should be judged/controlled by the surface appearance of the extruded shape and the press exit temperature which should be maintained in the appropriate range, see below.

#### **Press exit temperature**

Press exit temperature of the profile should be measured/monitored with a thermocouple or a contactless pyrometer for ensuring mechanical properties. Press exit temperature should be kept in the range of  $510^{\circ}$ C (min) –  $540^{\circ}$ C (preferable),  $550^{\circ}$ C (max) with an adequate cooling speed after press exit for achieving good mechanical properties by aging operation.  $510^{\circ}$ C is an acceptable minimum to ensure that all of the Mg<sub>2</sub>Si is fully dissolved which will ensure optimum mechanical properties and uniform anodizing response assuming cooling rate after press exit is sufficient. Temperatures lower than 540°C are best for ensuring the optimum surface finish. Above 550°C the surface will start to deteriorate and speed cracks may start to appear on sharp edges.

### **Quenching/Cooling after Press exit**

Adequate cooling speed after press exit is essential to produce good extruded products in terms of mechanical properties, anodizing response, bending characteristics and machinability.

Minimum cooling speed of 11 °C/sec between 500°C and 200°C is required to quench 6061 in order to achieve T6 properties. For sections thicker than 2 mm a water-box quench system after press-exit is necessary. However for thinner sections water mist-spray is usually sufficient for achieving this cooling speed.

Note if the distance between the press exit and the quenching tunnel is long or the extrusion speed is very slow (ie. heavy profiles) then the profile entry temperature to the quench tunnel may be < 510°C. This could mean optimal properties are not achieved. Similarly press stoppages that occur between billet pushes can mean that the required quench rate is not achieved at the ends of the extruded profiles. Such material may need to be discarded.

#### Straightening

Approximately 0.5% of stretching is recommended for straightening, while over 1% of stretching might result in orange peel surface finish on the product.

### **Aging treatment**

In order to achieve maximum mechanical properties and good anodizing response, a very fine dispersion of  $\beta$ " MgSi should be precipitated after the aging treatment. To achieve this the following process is recommended:

# a) Natural aging ( keeping as-extruded product at room temperature)

Due to the higher content of Mg and Si in 6061 alloys natural aging before artificial aging will have a negative effect on the mechanical properties. Therefore it is recommended for extruded profiles to be aged as soon as possible.

# b) Artificial aging (aging Extruded profile around 170 - 200°C for 2 - 8hrs)

In order to precipitate fine and uniform  $\beta$ " MgSi the asextruded shape is artificially aged in the aging furnace. Generally lower temperatures and longer aging times achieve finer/more uniform  $\beta$ "- MgSi precipitation, resulting in higher mechanical properties and higher elongation values. Higher temperatures and shorter aging times have the opposite effect, as shown in the aging curves attached in the reference. In addition slower heat up time (in excess of 1 hour) will promote higher peak aged strengths.

### Typical Mechanical properties for Type 1 and 2

Following table shows typical mechanical properties with Type 1 and 2 billets in peak aged condition.

| Туре  | Tensile<br>strength | Yield strength | Elongation | Hardness<br>(Webster"B") |
|-------|---------------------|----------------|------------|--------------------------|
| Type1 | 310 MPa             | 280 MPa        | 10 %       | 15-16 HW                 |
| Type2 | 340 MPa             | 310 MPa        | 10 %       | 15-16 HW                 |

NOTE: (1) Hardness conversion table

Although hardness chart is made by Webster "B", hardness by other scale are shown in the table, attached in the reference.

# Recommended procedure and check-points for Anodizing, Bending, Welding and Extruding Hollow Shapes

Following are some brief recommendations for Anodizing, Bending, Welding and Extruding Hollow Profile operations.

### Anodizing

Anodizing treatment should be made as soon as possible after the aging treatment, preferably within 12 hrs. Prior to the anodizing treatment, the shapes should be kept clean, at ambient temperature and in a low humidity area as much as possible. In particular Acidic/ Alkaline environments should be carefully avoided.

#### **Bending**

In order to obtain good bending characteristics, the following steps are recommended.

a) The recommended timing is to bend the extruded shape within 8 hrs after extrusion, before aging.

b) If the bending has to process over 8 hrs after extrusion, the stabilization with the condition of 165°C x 2 hrs is recommended. By this procedure, the characteristics of predicable spring back would be obtained at any time.

c) After bending, the shapes can be aged to obtain the maximum mechanical properties by normal artificial aging.

#### Welding

6061 extruded shapes can be joined by both Arc welding procedures, eg GMAW and GTAW, Brazing, Gas welding, Resistant spot and Seam welding.

Regarding Filler alloy, 4000 series of filler alloy is recommended for 6061 alloy.

When detailed information is needed, "The Al association welding book" is recommended.

#### **Extrusion of Hollow shape**

As defects in the weld line tend to occur relatively easily, Extruders should pay special attention to the following 2 points when they produce hollow shapes with a port hole die.

a) The welding chamber must be kept clean without any foreign material for avoiding any contamination at the welding interfaces.

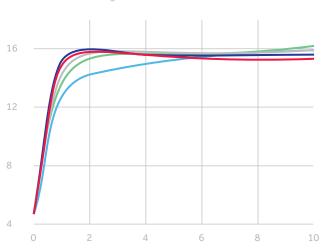
b) Die design and extrusion condition must be monitored to maintain the best possible welding interface quality. For ensuring this the weld interface should be carefully inspected in the lab to confirm it is sound and fully bonded by a metallurgical bond.

## **REFERENCE:**

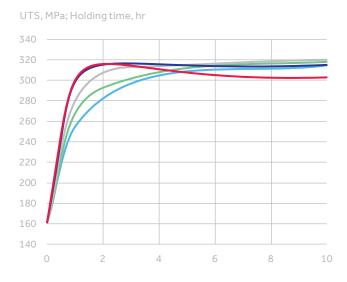
# 1. Trend of Aging curves for Type 1 and 2

Typical aging curve for Type 1 and 2 are shown in the reference. The condition of aging treatment should be modified by the aging chart, according to mechanical properties required by the end customers.

2. Hardness conversion chart

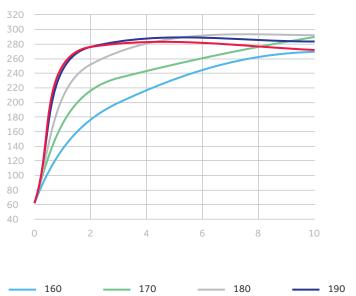

Hardness conversion chart of Webster "B", Rockwell "E", Rockwell "F", Vickers Hv is shown in the Table, attached.

## **REFERENCE 1:**


# Mechanical Properties VS Aging condition for 6061 MF T1\*

\* Curves presented should be considered representative. Tensile properties were measured on 30 mm gauge length tensile specimens after separate solution heat treatment and aging. Customers should confirm actual aging response in their own process.

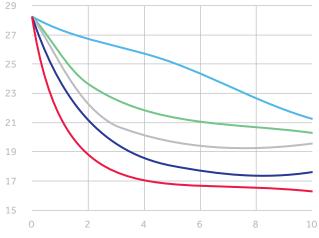
#### HARDNESS — WEBSTER




#### Hardness, HW; Holding time, hr



#### **YIELD STRENGTH**


YS, MPa; Holding time, hr

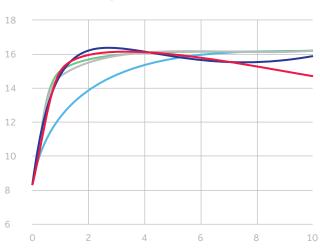


#### **ELONGATION**

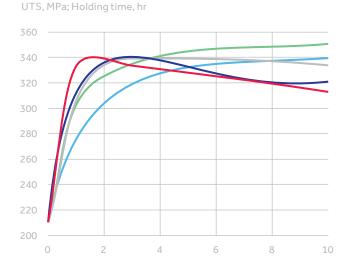
EL, %; Holding time, hr

200



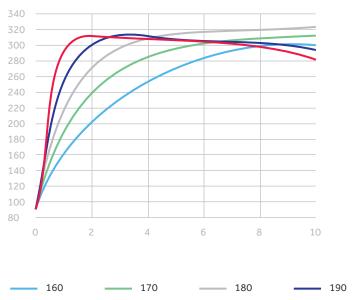

## **TENSILE STRENGTH**

## **REFERENCE 1:**


# Mechanical Properties VS Aging condition for 6061 MF T2\*

\* Curves presented should be considered representative. Tensile properties were measured on 30 mm gauge length tensile specimens after separate solution heat treatment and aging. Customers should confirm actual aging response in their own process.

#### HARDNESS — WEBSTER

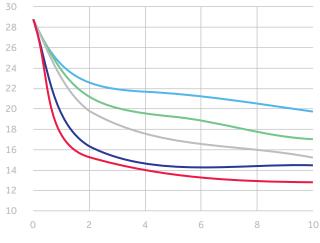



#### Hardness, HW; Holding time, hr



#### **YIELD STRENGTH**

YS, MPa; Holding time, hr




#### **ELONGATION**

EL, %; Holding time, hr

200

**TENSILE STRENGTH** 



# **REFERENCE 2:**

# **Hardness Conversion Table**

| WEBSTER<br>HW | ROCKWELL E<br>HRE | ROCKWELL F<br>HRF | VICKERS<br>HV | BRINELL<br>HB |
|---------------|-------------------|-------------------|---------------|---------------|
| 18            | 101               | 98.5              | 131           | 114           |
| 17            | 97                | 95                | 119           | 106           |
| 16            | 92.5              | 87.2              | 108           | 94            |
| 15            | 88                | 83                | 99            | 82            |
| 14            | 84                | 78                | 91            | 74            |
| 13            | 79.5              | 74                | 83            | 65            |
| 12            | 75                | 70                | 78            | 60            |
| 11            | 71                | 66                | 73            | 55            |
| 10            | 67                | 62.5              | 69            | 53            |
| 9             | 62.5              | 58                | 65            |               |
| 8             | 58                | 54                | 61            |               |
| 7             | 54                | 50                | 58            |               |
| 6             | 49.5              | 46.5              |               |               |
| 5             | 45                |                   |               |               |
| 4             | 41                |                   |               |               |

# **RUSAL OFFICES**

## SWITZERLAND

| RUSAL Marketing GmbH, Metalli Center<br>Baarerstrasse 22 6300 Zug Switzerland,<br>info-zug@rusal.com                                             | Phone:<br>Fax:           | +41 41 560 98 00<br>+41 41 560 98 01                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------|
| <b>RUSSIA</b><br>1, Vasilisy Kozhinoy str., Moscow,<br>121096, Russia                                                                            | Phone:<br>Fax:           | +7 (495) 720-51-70<br>+7 (495) 745-70-46              |
| <b>JAPAN</b><br>26th Floor, ARK Hills Sengokuyama Mori Tower,<br>1-9-10 Roppongi, Minato-ku, Tokyo 106-0032                                      | Phone:<br>Fax:           | +81 3 5561 9215<br>+81 3 5561 9216                    |
| <b>USA</b><br>800 Westchester Ave, Suite S-308<br>Rye Brook, NY 10573, USA                                                                       | Phone:<br>Fax:           | +1 914 670 5771<br>+1 914 670 5786                    |
| <b>CHINA</b><br>Suite 2505, 25/F, Tower D, Central International<br>Trade Center, 6A Jianguomenwai Av.,<br>Chaoyang distr., Beijing, 100022 PRC. | Phone:<br>Phone:<br>Fax: | +86 10 85679811<br>+86 10 85679120<br>+86 10 85679081 |
| <b>HONG KONG</b><br>Suites 3301 & 3320, 33/F, Jardine House,<br>1 Connaught Place, Central, Hong Kong                                            | Phone:<br>Fax:           | +852 39158701<br>+852 39158777                        |
| <b>SINGAPORE</b><br>One Temasek Avenue #24-01A,<br>Millenia Tower, Singapore 039192                                                              | Phone:                   | +65 6816 2915                                         |
| <b>TURKEY</b><br>Barbaros Mah. Palladium Ofis Bina Kat:2<br>No:217 Atasehir / Istanbul                                                           | Phone:<br>Fax:           | +90 216 663 60 30<br>+90 216 663 60 30                |
| <b>SOUTH KOREA</b><br>#1514, Seocho World Bldg. 19, Seoun-ro,<br>Seocho-gu, Seoul                                                                | Phone:<br>Fax:           | +82-2-597-0880<br>+82-2-597-1880                      |

www.rusal.com



